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Low Energy Properties of sssn, nddd Carbon Nanotubes
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According to band theory, an ideal undopedsn, nd carbon nanotube is metallic. We show that th
electron-electron interaction causes it to become Mott insulating with a spin gap. More interest
upon doping it develops superconducting fluctuations. [S0031-9007(97)03293-6]
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A carbon nanotube [1] is a graphite sheet wrapp
into a cylinder form. A pair of integerssn, md specifies
the wrapping. Starting from a graphite sheet with th
primitive lattice vectors$a, $b making an angle of60±,
the sn, md tube is a cylinder with the axis running
perpendicular ton $a 1 m $b, so that atoms separated b
n $a 1 m $b are wrapped onto each other.

Considerable efforts have gone into studying the ba
structure of carbon nanotubes [2]. The purpose of th
paper is to address the effects of electron-electron
teraction on the low energy properties of them. In
one-electron tight-binding description, where one retain
singlep orbital per atom and keeps only the nearest neig
bor hopping, alln fi m tubes are band insulators with
gaps generally scaling inversely with the radius [2]. F
these tubes a sufficiently weak electron-electron inter
tion is not expected to qualitatively change the low e
ergy properties. The same cannot be said for thesn, nd
tubes, which are band metals. To be precise, for the
ter, two of the4n bands intersect the Fermi level to form
two Dirac points (Fig. 1). Because of the low dimensio
ality and the presence of gapless excitations, the effe
of electron-electron interaction must be examined mo
carefully.

In this paper we perform perturbative renormalizatio
group (RG) calculations to analyze the low energy b
havior of thesn, nd tubes [3]. The microscopic Hamil-
tonian consists of a nearest-neighbor tight-binding mod
for the p orbital on each carbon atom (the bondin
topology is illustrated in Fig. 2) and a HubbardU plus
a nearest neighborV for the electron correlations. To
build up an effective model for low temperature, we fir
discard all bands that do not intersect the Fermi lev
Second, we regard the two remaining bands as linea
dispersing, i.e., we ignore the band curvature. Becau
of these approximations, a upper energy cutoffEc has
to be imposed on our subsequent discussions [4]. In
Hilbert space of the two bands, the original interactio
U andV give rise to twelve independent scattering amp
tudesgabcd

ijkl .
The effective Hamiltonian is given byH ­ HK 1 HI ,

where
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HK ­
X

i­R,L

X
a­6

X
s

sayFd
Z

dxc
y
iassxd

≠x

i
ciassxd ,

(1)

HI ­
X gabcd

ijkl

2

Z
dxc

y
iassxdcy

jbs0sxdckcs0sxdcldssxd .

In the second line of Eq. (1) the sum is taken ov
i, j, k, l ­ R, L, a, b, c, d ­ 6, and s, s0 ­", #. The
operatorc1

i6sskd ­
R

dxeikxc
y
i6ssxd creates a rightyleft

moving electron with momentumki 1 k and with spin
s. Here ki is the momenta measured from the rig
sRd or left sLd Dirac points (Fig. 1). The only nonzero
g’s in Eq. (1) are those whose lower and upper indic
have the following form: sRRRRd, sRLRLd, sRLLRd,
and s1 1 11d, s1 1 22d, s1 2 12d, s1 2 21d,
plus those generated by1 $ 2 and/or R $ L. We
abbreviate the twelve independent coupling constant
g

j
i , wherei ­ 1, 2, 4; j ­ 1, 2, 3, 4 [5].
We then perform a one-loop RG calculation, which is

straightforward generalization of the one-band calculat
[6]. The only complication is that instead of four ther
are twelve independent scattering amplitudes. This cal
lation yields

sg1
1d0 ­ 2 g3

1g3
1 1 g3

1g3
2 2 g1

1g1
1 2 g2

1g1
2 ,

sg2
1d0 ­ g2

4g2
1 1 g3

4g3
1 2 g2

1g2
2 2 g1

2g1
1 ,

sg3
1d0 ­ 2 2g3

1g1
1 1 g3

1g2
2 1 g3

2g1
1 1 g2

4g3
1 1 g3

4g2
1 ,

sg1
2d0 ­ g2

4g1
2 1 g1

4g2
1 2 2g1

4g1
2 1 g3

4g3
1 2 g3

4g3
2

2 g2
1g1

1 2 g1
2g2

2 ,

sg2
2d0 ­ sg3

2g3
2 2 g2

1g2
1 2 g1

2g1
2 2 g1

1g1
1 , (2)

sg3
2d0 ­ g3

2g2
2 1 g2

4g3
2 1 g1

4g3
1 2 2g1

4g3
2 1 g3

4g2
1 2 g3

4g1
2 ,

sg1
4d0 ­ 2 g1

4g1
4 1 g3

1g3
2 2 g3

2g3
2 1 g2

1g1
2 2 g1

2g1
2 ,

sg2
4d0 ­ sg3

4g3
4 2 g1

4g1
4 1 g3

1g3
1 1 g2

1g2
1dy2 ,

sg3
4d0 ­ 2 g3

4g1
4 1 2g3

4g2
4 2 2g3

2g1
2 1 g3

1g1
2 1 g3

2g2
1 1 g3

1g2
1 ,

plus sg4
1d0 ­ sg4

2d0 ­ sg4
4d0 ­ 0. In the above,s d0 denotes

dydx, wherex ; lns Ec

E dypyF with Ec and E being the
initial and running energy cutoffs, respectively.
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To draw the implications from the RG equations we compute correlation functionsxasvd ­R
dx dt eivtkTOasx, tdO1

a s0, 0dl for the followingOa:

Ocdw1sxd ­ c
y
R1"sxdcR2"sxd 1 c

y
R1#sxdcR2#, Osdw1sxd ­ fcy

R1"sxdcR2"sxd 2 c
y
R1#sxdcR2#sxdgy2 ,

Oss1sxd ­ fcy
R1"sxdcy

R2#sxd 2 c
y
R1#sxdcy

R2"sxdgy
p

2 , Ots1sxd ­ c
y
R1"sxdcy

R2"sxd , (3)

Ocdw2sxd ­ c
y
R1"sxdcL2"sxd 1 c

y
R1#sxdcL2#sxd , Osdw2sxd ­ fcy

R1"sxdcL2"sxd 2 c
y
R1#sxdcL2#sxdgy2 ,

Oss2sxd ­ fcy
R1"sxdcy

L2#sxd 2 c
y
R1#sxdcy

L2"sxdgy
p

2 , Ots2sxd ­ c
y
R1"sxdcy

L2"sxd ,
a
le
n
n

t
n

v
a
y

l

ld

d
.

ory
ers

e
he
se.
plus those generated byR $ L and/or1 $ 2. In the
above, cdw, sdw, ss, and ts stand for charge density w
spin density wave, singlet superconductivity, and trip
superconductivity, respectively. These correlation fu
tions are chosen because of their logarithmic diverge
in the absence of interaction. To the lowest order ing’s,
the results are

xa ­ Nax0svd
µ

Ec

v

∂Kay2pyF

,

(4)

x0svd ­
1

2pyF
ln

µ
Ec

v

∂
.

Here all Na are unity, except thatNcdw1 ­ Ncdw2 ­ 2,
and Kcdw1 ­ g2

4 2 2g1
4, Ksdw1 ­ g2

4, Kss1 ­ 2g2
4 2

g1
4, Kts1 ­ g1

4 2 g2
4, Kcdw2 ­ g2

2 2 2g1
1, Ksdw2 ­ g2

2, Kss2 ­
2g2

2 2 g1
1, Kts2 ­ g1

1 2 g2
2.

(I) The undoped case.—With the lattice constan
set to unity, the bare values of the coupling consta
are g1

2 ­ g3
2 ­ g1

4 ­ g3
4 ­ U 2 V , g1

1 ­ g2
1 ­ g3

1 ­
g4

1 ­ U, andg2
2 ­ g4

2 ­ g2
4 ­ g4

4 ­ U 1 V . We solve
Eq. (2) numerically forVyU # 1 and find that in all
cases the absolute values of all coupling constants e
tually diverge. As to the susceptibilities, we find th
for V

U , s V
U dc ø 0.8 the most divergent susceptibilit

is xsdw1, and for s V
U dc ,

V
U , 1 the most divergent

susceptibility isxcdw2.
(a) The SDW1 phase:For V

U , s V
U dc we perform a

mean-field theory using therenormalizedHamiltonian.
Guided by the susceptibility result, we introduceMR ­

FIG. 1. The low-energy band structures ofsn, nd tubes. “L”
and “R” label the Dirac points, “1” and “2” label the right
and left movers. The dashed line denotes the Fermi leve
the doped case.
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kORsxdl andML ­ kOLsxdl, where

Oisxd ­ fc1
i1"sxdci2"sxd 2 c

1
i1#sxdci2#sxdgy2 , (5)

wherei ­ L, R as the order parameters. The mean-fie
Hamiltonian is the factorized version of

H ­ HK 2
Z

dx

( X
i­R,L

sg3
4OiOi 1 g2

4O1
i Oid

1 2g3
1O1

R O1
L 1 2g2

1O1
R OL 1 H.c.

)
.

(6)

In the range ofVyU considered here the renormalize
values of all theg’s appearing in Eq. (6) are positive
Consequently, the mean-field solution predictsMR ­
Mp

R ­ ML ­ Mp
L ­ M0. It is important to note that the

term proportional tog3
4 demands bothMR and ML to be

real, and the term proportional tog2
1 requires them to

have the same sign. Consequently, the mean-field the
completely fixes the U(1) phases of the order paramet
MR and ML. The only global degree of freedom left is
the SU(2) rotation of the order parameter away from th
spinz direction. The Goldstone mode associated with t
latter governs the low energy physics of the SDW1 pha
Indeed, let us define

Qss0sxd ­
X

i­L,R

kcy
i1ssxdci2s0 sxdl

2
dss0

2

X
t

kcy
i1tsxdci2tsxdl 1 c.c. (7)

The mean-field solution corresponds toQss0 ­ Q0
ss0 ­

2sM0dss0 . A smooth twist in the direction of the order

FIG. 2. The bonding structure ofsn, nd tubes.
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parameter corresponds toQss0 ­ fU1Q0Ugss0 , whereU
is a smooth space-time dependent SU(2) matrix. Afte
proper rescaling of the space and time coordinates,
effective action governing the dynamics of such twists i

Ss ­
g
2

Z
dt dx Trfs≠mQd2g . (8)

Unlike the half-filled one-band Hubbard model, the e
fective action does not contain a topological term. This
because there are two Dirac points instead of one. Inde
it can be shown that each Dirac point contributes a top
logical term with coefficientp [7]. Thus, when added
together, their effects cancel [8]. The1 1 1-dimensional
nonlinears model given by Eq. (8) is always disordere
[9], which indicates a gap in the spin spectrum [10].

(b) The CDW2 phase:For 1 .
V
U . s V

U dc, the most
divergent susceptibility isxcdw2. Therefore we introduce
DRL ­ kORLsxdl andDLR ­ kOLRsxdl, where

Oijsxd ­
X
s

c
y
i1ssxdcj2ssxd , sijd ­ sRLd, sLRd (9)

as order parameters. The mean-field Hamiltonian is
factorized form of

H ­ HK 1
1
2

s2g3
1 2 g3

2d
Z

dxfORLOLR 1 O1
RLO1

LRg

1
1
2

s2g1
1 2 g2

2d fO1
RLORL 1 O1

LROLRg . (10)

For the range ofVyU considered here the renormalize
s2g3

1 2 g3
2d and s2g1

1 2 g2
2d are positive and negative re

spectively. In the mean-field theory the term propo
tional to s2g3

1 2 g3
2d sets the sum of the phases ofDRL

and DLR to p, i.e., DRL ­ 2D
p
LR . The mean-field so-

lution is not unique, there being a family of equivalen
mean-field solutions related by theDRL ! eiuDRL and
DLR ! e2iuDLR transformation. This continuous degen
eracy reflects the symmetry of Eq. (10) under this tran
formation. Under such circumstances, there will be
Goldstone mode. To determine the effective action f
the latter, we letDRLsx, td ­ D0eiusx,td and DLRsx, td ­
2D0e2iusx,td in the mean-field Hamiltonian and integrat
out the electronic degrees of freedom [7]. (In the abov
usx, td is a smooth space-time function.) To determin
whether or not this mode is charged, we impose a ba
ground electric fieldE. The details of such a calculation
will be reported elsewhere [8], but the following is th
answer. After proper rescaling ofx and t, the effective
action forf is

Sg ­
K
2

Z
dt dx

µ
fp

≠m

i
f

∂2

, (11)

wheref ; eiu . The lack of electric field dependence i
Eq. (11) indicates that the Goldstone mode is neutral.

(II) The doped case.—In the doped caseg3
4 ­ g3

1 ­
g3

2 ­ 0. Integrating Eq. (2) numerically forVyU , 1,
a
he

-
is
ed,
o-

he

-

t

-
s-
a
r

e,
e
k-

we see that the absolute values of all coupling consta
again eventually diverge. In this case, there are thr
phases. ForVU , s V

U dc1 ø 0.55 the most divergent sus-
ceptibility is the superconductingxss2. For s V

U dc1 ,
V
U ,

s V
U dc2 ø 0.65 the most divergent susceptibility isxsdw1.

Finally, for s V
U dc2 ,

V
U , 1 the most divergent suscepti-

bility is xcdw1.
(a) The SS2 phase: For V

U , s V
U dc1 we introduce

D1 ­ kb1sxdl and D2 ­ kb2sxdl as the order parameters
where

b1
1 sxd ­ fcy

R1"sxdcy
L2#sxd 2 s"$#dgy

p
2 , (12)

and the same expression with1 $ 2 for b1
2 . The

mean-field Hamiltonian is the factorized form of [11],

H ­ HK 1 sg1
1 1 g2

2d
Z

dxfb1
1 sxdb1sxd 1 b1

2 sxdb2sxdg

1 sg2
1 1 g1

2d
Z

dxfb1
1 sxdb2sxd 1 b1

2 sxdb1sxdg .

(13)

For the range ofVyU considered here, after suffi-
cient steps of renormalization,g1

1 1 g2
2 becomes negative.

Meanwhile,g2
1 1 g1

2 stays positive. In the mean-field the
ory the term proportional tosg2

1 1 g1
2d setsD1 ­ 2D2.

There is also a continuous family of mean-field solu
tions generated by theD1,2 ! eifD1,2 transformation.
This degeneracy reflects the global U(1) invariance
Eq. (13). The Goldstone mode associated withf domi-
nates the low energy physics of the SS2 phase. If we
Dsx, td ­ D0eiusx,td, after proper rescaling ofx andt, the
effective action for the Goldstone mode is

S0
g ­

K
2

Z
dt dx

∑
fp

µ
≠m

i
2 2Am

∂
f

∏2

. (14)

Here f ; eiu , and Am is the external gauge field. The
factor of two in front of Am reflects the fact that the
Cooper pair is doubly charged.

Now we address the effect of impurities on superco
ductivity. For a single impurity the following terms are
added to the Hamiltonian:

Himp ­
X

i,j­R,L

X
a,b­6

uab
ij fc1

iass0dcjbss0d 1 H.c.g .

(15)

In the above, “0” is the position of the impurity. The one
loop RG equations foruab

ij are

su21
LR d0 ­ sg2

2 2 2g1
1du21

LR y2 ,

(16)

su21
RR d0 ­ sg2

4 1 g2
1 2 2g1

4 2 2g1
2du21

RR y2 ,
4247
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plus six other equations obtained byR $ L and
1 $ 2. All other u0s do not renormalize. For positiv
bare u21

LR and u21
RR , u21

LR eventually grows upon renor
malization, while u21

RR eventually shrinks. Nominally,
we would drop the latter and keep only the forme
However, within the range of coupling constants whe
we can trust our perturbative analyses,u21

LR su21
RR d is

only amplified (suppressed) by roughly a factor of
For this reason we analyze the effects of all impur
scattering channels. The results are summarized as
lows: (1) The terms introduced byu11

LR , u22
LR , u11

RL , u22
RL

annihilate the pair. (2) The terms introduced b
u21

RR , u12
RR , u21

LL , u12
LL , u21

LR , u12
LR , u21

RL , u12
RL break the pair.

(3) The terms introduced byu11
RR , u22

RR , u11
LL , u22

LL scatter
it. Therefore a large amount of impurities can destr
superconductivity through (2), and produce Copper p
localization through (3).

(b) The SDW1 phase:For s V
U dc1 ,

V
U , s V

U dc2 our
order parameters are the same as those defined in Eq
The mean-field Hamiltonian is the factorized form
Eq. (6), except thatg3

1 and g3
4 are set to zero. For the

range ofVyU considered here the renormalized valu
of g2

4 and g2
1 are both positive. Consequently, the ter

proportional tog2
1 requiresMR ­ ML. In this case, in

addition to the global SU(2) freedom associated w
the spin rotation, there remains a global U(1) freedo
i.e., MR,L ! eifMR,L. The effective action for the spin
Goldstone mode is the same as that in Eq. (8), hence
spin excitations remain gapped. The effective action
the charge Goldstone mode is that of Eq. (11), except
an additional term arising from the chiral anomaly shou
be added:

S00
g ­ Sg 1 Schiral, Schiral ­ i

4
p

Z
dx dtEusx, td .

(17)

The last term reflects the fact that the U(1) Goldsto
mode is a charged mode. The physical meaning of
mode is the sliding degree of freedom of the spin dens
wave.

(c) The CDW1 phase:For s V
U dc2 ,

V
U , 1 we intro-

duceDR ­ kORsxdl andDL ­ kOLsxdl as order parame-
ters. In the above,

Oisxd ­
X
s

c
y
i1ssxdci2ssxd , i ­ L, R . (18)

The mean-field Hamiltonian is the factorized form of

H ­ HK 1
1
2

s2g1
2 2 g2

1d
Z

dxfORO1
L 1 OLO1

R g .

(19)

In the range ofVyU considered here,2g1
2 2 g2

1 , 0.
Consequently, mean-field theory givesDR ­ DL with
4248
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a global U(1) freedom, namely,DR,L ! eiuDR,L. The
Goldstone mode associated with this U(1) freedom
again governed by an action of the form Eq. (17). In th
case,f describes the sliding mode of the charge dens
wave.

The effects of the long range Coulomb interactio
and the nature of various phase transitions, remain
be studied. Our recursion relation [Eq. (2)] has be
obtained previously in studying various versions
two-band models [12]. The relation between our mod
and the latter can be established via the identific
tion that sR, 1d $ sA, Rd, sR, 2d $ sB, Ld, sL, 1d $
sB, Rd, sL, 2d $ sA, Ld, where A and B label the two
bands.
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